

Introduction

CS59000: AI/DC Networking

Fall 2025

Vamsi Addanki vaddank@purdue.edu

https://stygianet.github.io

Datacenter Networks

Image source: https://www.google.com/about/datacenters/gallery/

Datacenter Networks

Image source: https://www.google.com/about/datacenters/gallery/

Server

Datacenter Topologies

- Predominantly Clos-based topologies are used in production datacenters
 - Google [1]
 - Meta [2]
 - Microsoft [3]
- Clos-based topologies offer:
 - Non-blocking network
 - Uniform and high bandwidth availability between servers

Fat Tree (Clos-based) Datacenter Topology

[4] Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network architecture. ACM SIGCOMM computer communication review. 2008 Aug 17:38(4):63-74.

Further Reading: Alternative Topology Designs

- Topologies based on random graphs
 - JellyFish [5]
 - Xpander [6]
- Topologies optimized for Fault-tolerance
 - F10 [7]
- Topologies optimized for overall life cycle management of a datacenter
 - FatClique [8]
- Topologies optimized for specific traffic patterns (Self-adjusting Topologies)
 - Upcoming seminar session

Datacenters vs Internet

- Traffic Characteristics
- Autonomy
 - Large companies own datacenters and have partial or full control over their infrastructure.
 - Communication within Datacenter need not be standards compliant!
 - Internet is a collection of ASes, and controlled by many players.
 - Communication over the internet hence requires standards compliance.

Datacenter Applications

- Web search
- Datamining
- Web servers
- Cache Followers
- Hadoop
- DNN Training and various other ML workloads
- Netflix uses AWS, OpenAI uses Azure datacenters
- ...

Datacenter Traffic Characteristics [Distributed Training]

- Traffic generated by GPU clusters training a large model in a distributed manner across multiple GPUs
- Traffic patterns are based on collective communication
 - All-to-All
 - All-reduce
 - 0 ...
- Flow sizes are mostly similar
- Synchronized communication patterns

More on Collective Communication in upcoming sessions!

- Single GPU

Nvidia H100 GPU [9]

- Single GPU
 - Limited compute resources and memory

Nvidia H100 GPU [9]

- Exponentially growing compute requirements of language models
 - Can a single GPU support such large models?

Trend of sizes of state-of-the-art NLP models over time [10]

- Enter parallelization

e.g., NVIDIA DGX server

Multi-GPU servers are on the rise

- Multi-GPU servers are on the rise
- e.g., NVIDIA DGX has 8 GPUs

- Multi-GPU servers are on the rise
- e.g., NVIDIA DGX has 8 GPUs
- All 8 GPUs are interconnected to facilitate the communication required for parallelization

- Multi-GPU servers are on the rise
- e.g., NVIDIA DGX has 8 GPUs
- All 8 GPUs are interconnected to facilitate the communication required for parallelization
- A single task can now be parallelized across multiple compute resources

- Multi-GPU servers are on the rise
- e.g., NVIDIA DGX has 8 GPUs
- All 8 GPUs are interconnected to facilitate the communication required for parallelization
- A single task can now be parallelized across multiple compute resources
- Each GPU is also connected to a network interface card (NIC)
 - Allows connecting multiple DGX servers

 Multiple multi-GPU servers can be further connected together to create a "Super Pod"

- Multiple multi-GPU servers can be further connected together to create a "Super Pod"
- Each DGX server provides 8 GPUs for parallelization

- Multiple multi-GPU servers can be further connected together to create a "Super Pod"
- Each DGX server provides 8 GPUs for parallelization
- Interconnecting multiple servers allows for scaling to a large cluster
- e.g, GPT-4 was trained on a cluster
 of ~25000 GPUs

- GPUs *communicate* in order to aggregate the results globally
 - e.g., GPUs compute local gradients
 - GPUs in a cluster exchange gradients in order to aggregate results

- Communication is an essential part of massively parallel distributed computing
- Later in this seminar:
 - Collective communication primitives
 - Cost model for analyzing collectives
 - Collective communication algorithms (Optimizing the comm. time)
- Fun fact: Collective communication is not new. GPU clusters are new. These algorithms have been widely studied for decades e.g., Message Passing
 Interface (MPI)
 - Nvidia's NCCL, AMD's RCCL,.... are all basically reincarnations of MPI
 - "CCL" stands for Collective Communication Library

Collective Communication Primitives: Broadcast

- A single node transmits its entire data to all other nodes

Collective Communication Primitives: Scatter

- A single node transmits distinct chunks of its data to all other nodes

Collective Communication Primitives: Gather

- Every node transmits *distinct* chunks of its data to a single (root) node

Collective Communication Primitives: AllGather

- Every node transmits distinct chunks of its data to all other nodes

Collective Communication Primitives: Reduce

 Data across all the nodes is globally aggregated (reduced e.g., sum, max) at a single (root) node

Collective Communication Primitives: Reduce-Scatter

Data across all the nodes is globally aggregated (reduced e.g., sum, max)
 and distinct chunks of the reduced results are scattered across the nodes

Collective Communication Primitives: AllReduce

Data across all the nodes is globally aggregated (reduced e.g., sum, max)
 and sent to all the nodes in the network

Network Demand vs Capacity Mismatch

[12] A flat datacenter network with nanosecond optical switching (SIGCOMM 2020)

Reconfigurable Datacenter Networks

- Generalization of the design space: Topology can change over time
- Static networks are a special case

Reconfigurable Datacenter Networks

- Generalization of the design space: Topology can change over time
- Static networks are a special case

ProjecToR [Sigcomm 2016]

STyGIANet

Evolving Graph

Seminar Topics

- Large-scale LLM Training Network Architectures
- Collective Communication
- Photonic Interconnects
- Al for Networking

Course website: https://stygianet.github.io/courses/2025fallaidc

Schedule is fluid and much relaxed! The topics will be adjusted on-demand.

Grading

- 3 Assignments: 25%
- Mid-term exam (oral exam): 25%
- Final project/paper: 50%
 - Happy to help and work with you on finding a topic for research/project
 - Last two weeks of the schedule are dedicated for project feedback, final presentations, and submissions

Alright, enough formalities. Let's have some fun learning and building networks!

The End

